Author Affiliations
Abstract
Key Laboratory of In-fiber Integrated Optics, Ministry of Education, Harbin Engineering University, Harbin 150001, China
We propose and demonstrate the cascaded multi-wavelength mode-locked erbium-doped fiber laser (EDFL) based on ultra-long-period gratings (ULPGs) for the first time, to the best of our knowledge. Study found that the ULPG can be used as both a mode-locker for pulse shaping and a comb filter for multi-wavelength generation simultaneously. Using the dual-function of ULPG, three-, four-, five-, six-, and seven-wavelength mode-locked pulses are obtained in EDFL, seven of which are the largest number of wavelengths up to now. For the four-wavelength soliton pulses, their pulse width is about 7.8 ps. The maximum average output power and slope efficiency of these pulses are 8.4 mW and 2.03%, respectively. Besides the conventional pulses, hybrid soliton pulses composed of a four-wavelength pulse and single soliton are also observed. Finally, the effect of cavity dispersion on the multi-wavelength mode-locked pulses is also discussed. Our findings indicate that apart from common sensing and filtering, the ULPG may also possess attractive nonlinear pulse-shaping property for ultrafast photonics application.
ultra-long-period grating fiber laser ultrafast laser multi-wavelength 
Chinese Optics Letters
2021, 19(7): 071405
Author Affiliations
Abstract
1 Center of Ultra-precision Optoelectronic Instrument, Harbin Institute of Technology, Harbin 150080, China
2 Key Laboratory of In-Fiber Integrated Optics, Ministry of Education, Harbin Engineering University, Harbin 150001, China
3 VI Service Network Co., Ltd., Shanghai 201203, China
The spectral purity of fiber lasers has become a critical issue in both optical sensing and communication fields. As a result of ultra-narrow intrinsic linewidth, stimulated thermal Rayleigh scattering (STRS) has presented special potential to compress the linewidth of fiber lasers. To suppress stimulated Brillouin scattering (SBS), the most dominant disturbance for STRS in optical fibers, a semi-quantitative estimation has been established to illuminate the mechanism of suppressing SBS in a periodic tapered fiber, and it agrees with experimental results. Finally, a linewidth compression device based on STRS is integrated into a single-longitudinal-mode ring-cavity fiber laser with secondary cavities, and its linewidth is verified to be 200 Hz through a self-heterodyne detecting and Voigt fitting method.
Nonlinear optics Stimulated scattering, modulation, etc. Lasers 
Photonics Research
2017, 5(3): 03000233

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!